This instructional material was collaboratively developed and reviewed by educators from public and private schools, colleges, and/or universities. We encourage teachers and other education stakeholders to email their feedback, comments, and recommendations to the Department of Education at action@deped.gov.ph.

We value your feedback and recommendations.
Republic Act 8293, section 176 indicates that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for exploitation of such work for profit. Such agency or office may among other things, impose as a condition the payment of royalties.

The borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trademarks, etc.) included in this book are owned by their respective copyright holders. The publisher and authors do not represent nor claim ownership over them.

Published by the Department of Education
Secretary: Br. Armin Luistro FSC
Undersecretary: Dr. Yolanda S. Quijano

Development Team of the Learner's Module

Consultant: Maxima J. Acelajado, Ph.D.
Authors: Emmanuel P. Abuzo, Merden L. Bryant, Jem Boy B. Cabrella, Belen P. Caldez, Melvin M. Callanta, Anastacia Proserfina I. Castro, Alicia R. Halabaso, Sonia P. Javier, Roger T. Nocom, and Concepcion S. Ternida
Editor: Maxima J. Acelajado, Ph.D.
Reviewers: Leonides Bulalayao, Dave Anthony Galicha, Joel C. Garcia, Roselle Lazaro, Melita M. Navarro, Maria Theresa O. Redondo, Dianne R. Requiza, and Mary Jean L. Siapno
Illustrator: Aleneil George T. Aranas
Layout Artist: Darwin M. Concha
Management and Specialists: Lolita M. Andrada, Jose D. Tuginayo, Jr., Elizabeth G. Catao, Maribel S. Perez, and Nicanor M. San Gabriel, Jr.
Table of Contents

Unit 3

Module 9: Parallelism and Perpendicularity .. 441

- Module Map .. 442
- Pre-Assessment ... 443
- Learning Goals ... 448
 - Activity 1 .. 448
 - Activity 2 .. 449
 - Activity 3 .. 449
 - Activity 4 .. 450
 - Activity 5 .. 451
 - Activity 6 .. 453
 - Activity 7 .. 454
 - Activity 8 .. 455
 - Activity 9 .. 457
 - Activity 10 ... 458
 - Activity 11 ... 460
 - Activity 12 ... 461
 - Activity 13 ... 464
 - Activity 14 ... 468
 - Activity 15 ... 469
 - Activity 16 ... 470
 - Activity 17 ... 471
 - Activity 18 ... 472
 - Activity 19 ... 472
 - Activity 20 ... 473
 - Activity 21 ... 474
 - Activity 22 ... 474
 - Activity 23 ... 476

- **Summary/Synthesis/Generalization** .. 478
- **Glossary of Terms** ... 478
- **References and Website Links Used in this Module** 481
I. INTRODUCTION AND FOCUS QUESTIONS

Have you ever wondered how carpenters, architects, and engineers design their work? What factors are being considered in making their designs? The use of parallelism and perpendicularity of lines in real life necessitates the establishment of these concepts deductively.

This module seeks to answer the question: “How can we establish parallelism or perpendicularity of lines?”

II. LESSON AND COVERAGE

In this module, you will examine this question when you study the following about Parallelism and Perpendicularity:

1. Proving Theorems on Parallel and Perpendicular Lines
2. Proving Properties of Parallel Lines Cut by a Transversal
3. Conditions to Prove that a Quadrilateral is a Parallelogram
4. Applications of Parallelism and Perpendicularity
In this lesson, you will learn to:

- illustrate parallel and perpendicular lines;
- demonstrate knowledge and skills involving angles formed by parallel lines and transversals;
- determine and prove the conditions under which lines and segments are parallel or perpendicular;
- determine the conditions that make a quadrilateral a parallelogram and prove that a quadrilateral is a parallelogram and;
- use properties of parallel and perpendicular lines to find measures of angles, sides, and other quantities involving parallelograms.

Here is a simple map of the lesson that will be covered in this module.
III. PRE-ASSESSMENT

Find out how much you already know about this module. Choose the letter that corresponds to the best answer and write it on a separate sheet. Please answer all items. After taking this test, take note of the items that you were not able to answer correctly. Correct answers are provided as you go through the module.

1. In the figure below, \(l_1 \parallel l_2 \) and \(t \) is a transversal. Which of the following are corresponding angles?
 a. \(\angle 4 \) and \(\angle 6 \), \(\angle 3 \) and \(\angle 5 \)
 b. \(\angle 1 \) and \(\angle 7 \), \(\angle 2 \) and \(\angle 8 \)
 c. \(\angle 1 \) and \(\angle 5 \), \(\angle 2 \) and \(\angle 6 \)
 d. \(\angle 4 \) and \(\angle 5 \), \(\angle 3 \) and \(\angle 6 \)

2. All of the following are properties of a parallelogram EXCEPT:
 a. Diagonals bisect each other.
 b. Opposite angles are congruent.
 c. Opposite sides are congruent.
 d. Opposite sides are not parallel.

3. Lines \(m \) and \(n \) are parallel cut by transversal \(t \) which is also perpendicular to \(m \) and \(n \). Which statement is NOT correct?
 a. \(\angle 1 \) and \(\angle 6 \) are congruent.
 b. \(\angle 2 \) and \(\angle 3 \) are supplementary.
 c. \(\angle 3 \) and \(\angle 5 \) are congruent angles.
 d. \(\angle 1 \) and \(\angle 4 \) form a linear pair.

4. In the figure below, which of the following guarantees that \(m \parallel n \)?
 a. \(\angle 1 \equiv \angle 7 \)
 b. \(\angle 3 \equiv \angle 5 \)
 c. \(\angle 4 \equiv \angle 5 \)
 d. \(\angle 4 \equiv \angle 7 \)

5. Parallel lines \(a \) and \(b \) are cut by transversal \(t \). If \(m\angle 1 = 85 \), what is the measure of \(\angle 5 \)?
 a. 5
 b. 85
 c. 95
 d. 275
6. If JOSH is a parallelogram and $m\angle J = 57$, find the measure of $\angle H$.
 a. 43
 b. 57
 c. 63
 d. 123

7. In the figure below, if $m \parallel n$ and t is a transversal which angles are congruent to $\angle 5$?
 a. $\angle 1$, $\angle 2$ and $\angle 3$
 b. $\angle 1$, $\angle 4$ and $\angle 8$
 c. $\angle 1$, $\angle 4$ and $\angle 7$
 d. $\angle 1$, $\angle 2$ and $\angle 8$

8. If LOVE is a parallelogram and $SE = 6$, what is SO?
 a. 3
 b. 6
 c. 12
 d. 15

9. The Venn Diagram on the right shows the relationships of quadrilaterals. Which statements are true?
 I - Squares are rectangles.
 II- A trapezoid is a parallelogram.
 III-A rhombus is a square.
 IV- Some parallelograms are squares.
 a. I and II
 b. III and IV
 c. I and IV
 d. II and III

10. All of the figures below illustrate parallel lines except:
 a.
 b.
 c.
 d.

11. In the figure below, \(a \parallel d \) with \(e \) as the transversal. What must be true about \(\angle 3 \) and \(\angle 4 \), if \(b \parallel c \)?

- a. \(\angle 3 \) is a complement of \(\angle 4 \).
- b. \(\angle 3 \) is congruent to \(\angle 4 \).
- c. \(\angle 3 \) is a supplement of \(\angle 4 \).
- d. \(\angle 3 \) is greater than \(\angle 4 \).

12. Which of the following statements ensures that a quadrilateral is a parallelogram?

- a. Diagonals bisect each other.
- b. The two diagonals are congruent.
- c. The consecutive sides are congruent.
- d. Two consecutive angles are congruent.

13. Which of the following statements is always true?

- a. Lines that do not intersect are parallel lines.
- b. Two coplanar lines that do not intersect are parallel lines.
- c. Lines that form a right angle are parallel lines.
- d. Skew lines are parallel lines.

14. STAR is a rhombus with diagonal \(RT \). If \(m\angle STR = 3x - 5 \) and \(m\angle ART = x + 21 \), what is \(m\angle RAT \)?

- a. 13
- b. 34
- c. 68
- d. 112

15. You are tasked to divide a blank card into three equal rows/pieces but you do not have a ruler. Instead, you will use a piece of equally lined paper and a straightedge. What is the sequence of the steps you are going to undertake in order to apply the theorem on parallel lines?

 I – Mark the points where the second and third lines intersect the card.
 II – Place a corner of the top edge of the card on the first line of the paper.
 III – Repeat for the other side of the card and connect the marks.
 IV – Place the corner of the bottom edge on the fourth line.

- a. I, II, III, IV
- b. II, III, IV, I
- c. I, III, IV, II
- d. II, IV, I, III
16. You are a student council president. You want to request for financial assistance for the installation of a bookshelf for the improvement of your school’s library. Your student council moderator asked you to submit a proposal for their approval. Which of the following will you prepare?

I. design proposal of the bookshelf
II. research on the importance of bookshelf
III. estimated cost of the project
IV. pictures of different libraries

a. I only
b. I and II only
c. I and III only
d. II and IV only

17. Based on your answer in item 16, which of the following standards should be the basis of your moderator in approving or granting your request?

a. accuracy, creativity, and mathematical reasoning
b. practicality, creativity, and cost
c. accuracy, originality, and mathematical reasoning
d. organization, mathematical reasoning, and cost

18. Based on item 16, design is common to all the four given options. If you were to make the design, which of the illustrations below will you make to ensure stability?
19. You are an architect of the design department of a mall. Considering the increasing number of mall-goers, the management decided to restructure their parking lot so as to maximize the use of the space. As the head architect, you are tasked to make a design of the parking area and this design is to be presented to the mall administrators for approval. Which of the following are you going to make so as to maximize the use of the available lot?

a.

b.

c.

d.

20. Based on your answer in item 19, how will your immediate supervisor know that you have a good design?

a. The design should be realistic.
b. The design should be creative and accurate.
c. The design should be accurate and practical.
d. The design shows in-depth application of mathematical reasoning and it is practical.
LEARNING GOALS AND TARGETS:

- The learner demonstrates understanding of the key concepts of parallel and perpendicular lines.
- The learner is able to communicate mathematical thinking with coherence and clarity in solving real-life problems involving parallelism and perpendicularity using appropriate and accurate representations.

What to Know

Start the module by looking at the figures below. Then, answer the succeeding questions.

Activity 1: Optical Illusion

- Can you see straight lines in the pictures above? ________
- Do these lines meet/intersect? ________
- Are these lines parallel? Why? ________
- Are the segments on the faces of the prism below parallel? Why? ________

- What can you say about the edges of the prism? ________
- Describe the edges that intersect and the edges that do not intersect. ________
You have just tried describing parallel and perpendicular lines. In Activities 2 and 3, your prior knowledge on parallelism and perpendicularity will be used.

Activity 2

Generalization Table

Direction: Fill in the first column of the generalization table below by stating your initial thoughts on the question.

How can parallelism or perpendicularity of lines be established?

<table>
<thead>
<tr>
<th>My Initial Thoughts</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity 3

Agree or Disagree

Anticipation-Reaction Guide

Read each statement under the **TOPIC** column and write **A** if you agree with the statement; otherwise, write **D**.

<table>
<thead>
<tr>
<th>Before-Lesson Response</th>
<th>TOPIC: Parallelism and Perpendicularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lines on the same plane that do not intersect are parallel lines.</td>
<td></td>
</tr>
<tr>
<td>2. Skew lines are coplanar.</td>
<td></td>
</tr>
<tr>
<td>3. Transversal is a line that intersects two or more lines.</td>
<td></td>
</tr>
<tr>
<td>4. Perpendicular lines are intersecting lines.</td>
<td></td>
</tr>
<tr>
<td>5. If two lines are parallel to a third line, then the two lines are parallel.</td>
<td></td>
</tr>
</tbody>
</table>
6. If two lines are perpendicular to the same line, then the two lines are parallel.

7. If one side of a quadrilateral is congruent to its opposite side, then the quadrilateral is a parallelogram.

8. Diagonals of a parallelogram bisect each other.

9. Diagonals of a parallelogram are congruent.

10. Diagonals of a parallelogram are perpendicular.

11. Opposite sides of a parallelogram are parallel.

12. Opposite angles of a parallelogram are congruent.

13. Consecutive angles of a parallelogram are congruent.

14. Squares are rectangles.

15. Squares are rhombi.

Well, those were your thoughts and ideas about our lesson. Start a new activity to further explore the key concepts on parallel and perpendicular lines. I guess you had already in your previous Mathematics lessons, but just to recall, then answer the next activity.

ACTIVITY 4 NAME IT: A RECALL...

We see parallel lines everywhere. Lines on a pad paper, railways, edges of a door or window, fence, etc. suggest parallel lines. Complete the table below using the given figure as your reference:

<table>
<thead>
<tr>
<th>Corresponding Angles</th>
<th>Alternate Interior Angles</th>
<th>Alternate Exterior Angles</th>
<th>Same Side Interior Angles</th>
<th>Same Side Exterior Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You gave your initial ideas on naming angle pairs formed by two lines cut by a transversal. What you will learn in the next sections will enable you to do the final project which involves integrating the key concepts of parallelism and perpendicularity of lines in model-making of a bookcase. Now find out how these pairs of angles are related in terms of their measures by doing the first activity on investigating the relationship between the angles formed by parallel lines cut by a transversal.

What to Process

Your goal in this section is to learn and understand key concepts on measurement of angles formed by parallel lines cut by a transversal and basic concepts on perpendicularity and the properties of a parallelogram. Towards the end of this section, you will be encouraged to learn the different ways of proving deductively. You may also visit the link for this investigation activity. http://www.mathwarehouse.com/geometry/angle/interactive-transveral-angles.php

Activity 5 Let's Investigate

Two parallel lines when cut by a transversal form eight angles. This activity will lead you to investigate the relationship between and among angles formed.

Measure the eight angles using your protractor and list all inferences or observations in the activity.

\[
\begin{align*}
\angle 1 &= \quad \, \\
\angle 2 &= \quad \, \\
\angle 3 &= \quad \, \\
\angle 4 &= \quad \, \\
\angle 5 &= \quad \, \\
\angle 6 &= \quad \, \\
\angle 7 &= \quad \, \\
\angle 8 &= \quad \, \\
\end{align*}
\]

OBSERVATIONS:

__
__
__

Now, think about the answers to the following questions. Write your answers in your answer sheet.
1. What pairs of angles are formed when two lines are cut by a transversal line?

2. What pairs of angles have equal measures? What pairs of angles are supplementary?

3. Can the measures of any pair of angles (supplementary or equal) guarantee the parallelism of lines? Support your answer.

4. How can the key concepts of parallel lines facilitate solving real-life problems using deductive reasoning?

Discussion: Parallelism

1. Two lines are parallel if and only if they are coplanar and they do not intersect.

 \[m \parallel n \]

 \[
 \begin{array}{c}
 1 \quad 2 \\
 3 \quad 4 \\
 5 \quad 6 \\
 7 \quad 8
 \end{array}
 \]

 transversal

2. A line that intersects two or more lines is called a transversal.

 a. The angles formed by the transversal with the two other lines are called:
 - exterior angles (\(\angle 1, \angle 2, \angle 7, \text{ and } \angle 8 \))
 - interior angles (\(\angle 3, \angle 4, \angle 5, \text{ and } \angle 6 \)).

 b. The pairs of angles formed by the transversal with the other two lines are called:
 - corresponding angles (\(\angle 1 \text{ and } \angle 5, \angle 2 \text{ and } \angle 6, \angle 3 \text{ and } \angle 7, \angle 4 \text{ and } \angle 8 \))
 - alternate interior angles (\(\angle 3 \text{ and } \angle 6, \angle 4 \text{ and } \angle 5 \))
 - alternate exterior angles (\(\angle 1 \text{ and } \angle 8, \angle 2 \text{ and } \angle 7 \))
 - interior angles on the same side of the transversal (\(\angle 3 \text{ and } \angle 5, \angle 4 \text{ and } \angle 6 \))
 - exterior angles on the same side of the transversal (\(\angle 1 \text{ and } \angle 7, \angle 2 \text{ and } \angle 8 \))

To strengthen your knowledge regarding the different angles formed by parallel lines cut by a transversal line and how they are related to one another, you may visit the following sites:

http://www.youtube.com/watch?v=AE3Pghlvqw0&feature=related
http://www.youtube.com/watch?v=VA92EWf9SRI&feature=relmfu
Study the problem situation below and answer the succeeding questions:

A zip line is a very strong cable between two points with a pulley attached to it. This could be used as a means of transportation. The zip line in the figure goes from a 20-foot tall tower to a 15-foot tower 150 meters apart in a slightly inclined ground as shown in the sketch. (Note: Tension of the rope is excluded.)

1. What kind of angle pairs are $\angle M$ and $\angle A$? $\angle MHT$ and $\angle ATH$?

2. In the figure above, what are the measures of the four angles?

 Solution: Answers:

 $m\angle M = \underline{\hspace{2cm}}$
 $m\angle A = \underline{\hspace{2cm}}$
 $m\angle MHT = \underline{\hspace{2cm}}$
 $m\angle ATH = \underline{\hspace{2cm}}$

3. Are the two towers parallel? Why do you say so?

4. Is the zip line parallel to the ground? Why do you say so?

For practice you may proceed to this link:
http://www.regentsprep.org/Regents/math/geometry/GP8/PracParallel.htm
I. Study the figure and answer the following questions as accurately as you can. The figure below shows \(a \parallel b \) with \(t \) as transversal.

Name:
1. 2 pairs of corresponding angles _______ _______
2. 2 pairs of alternate interior angles _______ _______
3. 2 pairs of alternate exterior angles _______ _______
4. 2 pairs of interior angles on the same side of the transversal _______ _______
5. 2 pairs of exterior angles on the same side of the transversal _______ _______

II. Based on your observations of the measures of the angles formed by parallel lines cut by a transversal, what can you say about the following angles?

a. Corresponding angles _______
 b. Alternate interior angles _______
 c. Alternate exterior angles _______
 d. Pairs of exterior angles _______
 e. Interior angles on the same side of the transversal _______

III. Find the value of \(x \) given that \(l_1 \parallel l_2 \).

1. \(m\angle 1 = 2x + 25 \) and \(m\angle 8 = x + 75 \) _______
2. \(m\angle 2 = 3x - 10 \) and \(m\angle 6 = 2x + 45 \) _______
3. \(m\angle 3 = 4v - 31 \) and \(m\angle 8 = 2x + 7 \) _______
Given any two distinct lines on a plane, the lines either intersect or are parallel. If two lines intersect, then they form four angles. Consider the figures below to answer the questions that follow.

![Figures 1, 2, 3, and 4](image)

1. What is common in the four figures given above?

2. What makes figures 3 and 4 different from the first two figures?

3. Which among the four figures show perpendicularity? Check by using your protractor.

4. When are lines said to be perpendicular to each other?

5. How useful is the knowledge on perpendicularity in real-life? Cite an example in which perpendicularity is important in real-life.
Discussion: Perpendicularity

Two lines that intersect to form right angles are said to be perpendicular. Line segments and rays can also be perpendicular. A perpendicular bisector of a line segment is a line or a ray or another line segment that is perpendicular to the line segment and intersects it at its midpoint. The distance between two parallel lines is the perpendicular distance between one of the lines and any point on the other line.

The small rectangle drawn on intersecting lines indicates a “right angle.” The ⊥ symbol indicates perpendicularity of lines as in $\overline{XZ} \perp \overline{PY}$.

To prove that two lines are perpendicular, you must show that one of the following theorems is true:

1. If two lines are perpendicular to each other, then they form four right angles.
2. If the angles in a linear pair are congruent, then the lines containing their sides are perpendicular.

If \(\angle 1 \) and \(\angle 2 \) form a linear pair and \(\angle 1 \cong \angle 2 \), then \(l_1 \perp l_2 \).

3. If two angles are adjacent and complementary, the non-common sides are perpendicular.

If \(\angle CAR \) and \(\angle EAR \) are complementary and adjacent, then \(AC \perp AE \).

You may watch the video lesson using the given links. These videos will explain how to construct a perpendicular line to a point and a perpendicular line through a point not on a line.

http://www.youtube.com/watch?v=dK3S78SjPDw&feature=player_embedded

Activity 9 will test your skill and knowledge about perpendicular lines. This will prepare you also to understand the final task for this module. Come on. Try it!

ACTIVITY 9 DRAW ME RIGHT

Directions: Copy each figure on a separate sheet of bond paper. Draw the segment that is perpendicular from the given point to the identified side. Extend the sides if necessary.

1. \(A \) to \(RH \)
1. What did you use to draw the perpendicular segments?

2. How sure are you that the segments you drawn are really perpendicular to the indicated side?

Activity 10

THINK TWICE

Part I: Refer to the given figure and the given conditions in answering the succeeding questions. Raise your YES card if your answer is yes; otherwise, raise your NO card.

Given:

- $MI \cong IL$
- $SE \cong EL$
- $m\angle SEI = 90$

1. Is $ML \perp IS$?

 YES
 NO

2. Is $MS \perp SL$?

 YES
 NO

3. Is $SL \perp ML$?

 YES
 NO

4. Are $\angle MSI$ and $\angle ISL$ complementary angles?

 YES
 NO
5. Are $\angle MIS$ and $\angle SIE$ complementary angles? □ □
6. Is \overline{IE} a perpendicular bisector of \overline{SL}? □ □
7. Do $\angle MIS$ and $\angle SIL$ form a linear pair? □ □
8. Is the $m\angle MIS = 90$? □ □
9. Is \overline{SI} shorter than \overline{SE}? □ □
10. Is \overline{SE} shorter than \overline{MI}? □ □

Part II: Fill in the second, third, and fourth columns of the generalization table below by stating your present thoughts on the question.

How can parallelism or perpendicularity of lines be established?

<table>
<thead>
<tr>
<th>My Findings and Corrections</th>
<th>Supporting Evidence</th>
<th>Qualifying Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion: KINDS OF QUADRILATERALS:

A quadrilateral is a polygon with four sides. The symbol □ is used in this module to indicate a quadrilateral. For example, □ ABCD, this is read as “quadrilateral ABCD.”

Quadrilaterals are classified as follows:

1. Trapezium – a quadrilateral with no pair of parallel sides.
2. Trapezoid – a quadrilateral with exactly one pair of parallel sides. If the non-parallel sides are congruent, the trapezoid is isosceles.
3. Parallelogram – a quadrilateral with two pairs of parallel sides. There are two special kinds of parallelogram: the rectangle which has four right angles and the rhombus which has four congruent sides. A square which has four congruent angles and four congruent sides can be a rectangle or a rhombus because it satisfies the definition of a rectangle and a rhombus.
Study the blank diagram below. Write the name of the quadrilateral in the box. After which, complete the table below.

Direction: Place a check mark (✓) in the boxes below if the quadrilateral listed along the top row has the properties listed in the left column.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Parallelogram</th>
<th>Rectangle</th>
<th>Rhombus</th>
<th>Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposite sides are congruent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opposite angles are congruent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of the measures of the consecutive angles is 180°.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals are congruent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals are perpendicular.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals bisect each other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. What properties are common to rectangles, rhombi, and squares?

2. What makes a rectangle different from a rhombus? A rectangle from a square? A rhombus from a square?

3. What makes parallelograms special in relation to other quadrilaterals?

4. Are the properties of parallelograms helpful in establishing parallelism and perpendicularity of lines?

You may visit this URL to have more understanding of the properties of a parallelogram.
http://www.youtube.com/watch?feature=player_detailpage&v=0rNjGNI1Uzo

Activity 12: HIDE AND SEEK

Each figure below is a parallelogram. Use your observations in the previous activity to find the value of the unknown parts.

1. \[\text{34 cm} \]
 \[27 \text{ cm} \]
 \[a \]
 \[b \]

 YOUR ANSWER

 \[a = \underline{\hspace{2cm}} \]
 \[b = \underline{\hspace{2cm}} \]

2. \[\text{48°} \]
 \[c \]
 \[d \]

 c = \underline{\hspace{2cm}}
 d = \underline{\hspace{2cm}}
Discussion: Writing Proofs/Proving

In the previous modules you solved a lot of equations and inequalities by applying the different properties of equality and inequality. To name some, you have the APE (Addition Property of Equality), MPE (Multiplication Property of Equality), and TPE (Transitive Property of Equality). Now, you will use these properties with some geometric definitions, postulates, and theorems to write proofs.

In proving we use reasoning, specifically deductive reasoning. **Deductive reasoning** is a type of logical reasoning that uses accepted facts as reasons in a step-by-step manner until the desired statement is established or proved.

A **proof** is a logical argument in which each statement is supported/justified by given information, definitions, axioms, postulates, or theorems.

Proofs can be written in three different ways:

1. **Paragraph Form**

 Proof in paragraph form is the type of proof where you write a paragraph to explain why a conjecture for a given situation is true.

 Given: $\angle LOE$ and $\angle EOV$ are complementary

 Prove: $\overline{LO} \perp \overline{OV}$
Proof:

Since \(\angle LOE \) and \(\angle EOV \) are complementary, then \(m\angle LOE + m\angle EOV = 90 \) by definition of complementary angles. Thus, \(m\angle LOE + m\angle EOV = m\angle LOV \) by angle addition postulate and \(m\angle LOV = 90 \) by transitive property of equality. So, \(\angle LOV \) is a right angle by definition of right angles. Therefore, \(LO \perp OV \) by definition of perpendicularity.

2. Two-Column Form

Proof in two-column form has statements and reasons. The first column is for the statements and the other column is for the reasons.

Using the same problem in number 1, the proof is as follows:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle LOE) and (\angle EOV) are complementary.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (m\angle LOE + m\angle EOV = 90)</td>
<td>2. Definition of Complementary Angles</td>
</tr>
<tr>
<td>3. (m\angle LOE + m\angle EOV = m\angle LOV)</td>
<td>3. Angle Addition Postulate (AAP)</td>
</tr>
<tr>
<td>4. (m\angle LOV = 90)</td>
<td>4. Transitive Property of Equality (TPE)</td>
</tr>
<tr>
<td>5. (\angle LOV) is a right angle.</td>
<td>5. Definition of Right Angle</td>
</tr>
<tr>
<td>6. (LO \perp OV)</td>
<td>6. Definition of Perpendicularity</td>
</tr>
</tbody>
</table>

You may watch the video lesson on this kind of proof using the following link: http://www.youtube.com/watch?feature=player_embedded&v=3Ti7-Ojr7Cg

3. Flow Chart Form

A flow chart proof organizes a series of statements in a logical order using a flow chart. Each statement together with its justification is written in a box and arrows are used to show how each statement leads to another. It can make one's logic visible and help others follow the reasoning.

The flow chart proof of the problem in number 1 is shown below.
The following rubric will be used to rate proofs.

<table>
<thead>
<tr>
<th>Logic and Reasoning</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The mathematical reasoning is sound and cohesive.</td>
<td>The mathematical reasoning is mostly sound, but lacking some minor details.</td>
<td>The proof contains some flaws or omissions in mathematical reasoning.</td>
<td>The mathematical reasoning is either absent or seriously flawed.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use of mathematical terminology and notation</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation is skillfully used; terminology is used flawlessly</td>
<td>Notation and terminology are used correctly with only a few exceptions.</td>
<td>There is a clear need for improvement in the use of terminology or notation</td>
<td>Terminology and notation are incorrectly and inconsistently used.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correctness</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The proof is complete and correct.</td>
<td>The proof is mostly correct, but has a minor flaw.</td>
<td>More than one correction is needed for a proper proof.</td>
<td>The argument given does not prove the desired result.</td>
<td></td>
</tr>
</tbody>
</table>

It's your turn. Accomplish Activity 13 and for sure you will enjoy it!

Activity 13: Prove It

Complete each proof below:

1. **Given:** Line \(t \) intersects \(l_1 \) and \(l_2 \) such that \(\angle 1 \cong \angle 2 \).
 Prove: \(l_1 \parallel l_2 \)
 Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1 \cong \angle 2)</td>
<td>1. _______________</td>
</tr>
<tr>
<td>2. _______________</td>
<td>2. Vertical angles are congruent.</td>
</tr>
<tr>
<td>3. (\angle 3 \cong \angle 2)</td>
<td>3. Transitive Property of Congruence</td>
</tr>
<tr>
<td>4. (l_1 \parallel l_2)</td>
<td>4. _______________</td>
</tr>
</tbody>
</table>
2. **Given:** \(SA \parallel RT \)
\[\angle 2 \cong \angle 3 \]
Prove: \(MT \parallel AR \)

Proof:

- **Statement:** \(SA \parallel RT \)
 Reason: Given
- **Statement:** Alternate interior angles are congruent.

3. **Given:** \(ABCD \) is a parallelogram.
Prove: \(\angle A \) and \(\angle B \) are supplementary.

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (ABCD) is a parallelogram.</td>
<td>1.</td>
</tr>
<tr>
<td>2. (BC \parallel AD)</td>
<td>2.</td>
</tr>
<tr>
<td>3. (\angle A) and (\angle B) are supplementary.</td>
<td>3.</td>
</tr>
</tbody>
</table>
In this section, the discussion was about the key concepts on parallelism and perpendicularity. Relationships of the different angle pairs formed by parallel lines cut by a transversal and the properties of parallelograms were also given emphasis. The different ways of proving through deductive reasoning were discussed with examples presented.

Go back to the previous section and compare your initial ideas with the discussion. How much of your initial ideas are found in the discussion? Which ideas are different and need revision?

Now that you know the important ideas about this topic, go deeper by moving on to the next section.
What I have learned so far...
Your goal in this section is to take a closer look at some aspects of the topic. I hope that you are now ready to answer the exercises given in this section. Expectedly, the activities aim to intensify the application of the different concepts you have learned.

Activity 14 PROVE IT

Prove the given statements below using any form of writing proofs.

1. **Given:**
 \(m \parallel n \) and \(t \) is a transversal.

 Prove:
 \(\angle 1 \) and \(\angle 7 \) are supplementary.

2. In the figure, if \(m\angle 1 = 3x + 15 \) and \(m\angle 2 = 4x - 10 \), prove that \(CT \) is perpendicular to \(UE \).
1. What are the three different ways of proving deductively?
 __
 __

2. Which of the three ways is the best? Why?
 __
 __

3. How can one reason out deductively?
 __
 __

4. Why is there a need to study deductive reasoning? How is it related to real life? Cite a situation where deductive reasoning is applied.
 __
 __

Activity 15: Prove some more.

To strengthen your skill in proving deductively, provide a complete proof for each problem below. The use of flow chart is highly recommended.

1. Given:
 - LAND has \(\overline{LA} \cong \overline{AN} \cong \overline{ND} \cong \overline{DL} \)
 - with diagonal \(\overline{AD} \).

 Prove: LAND is a rhombus.

2. Given:
 - BEAD is a rectangle.

 Prove: \(\overline{AB} \cong \overline{DE} \)
I. What value of \(x \) will make each quadrilateral a parallelogram?

1. \[
\begin{array}{c}
\text{\((3x - 70)° \)} \\
\text{\((2x + 5)° \)} \\
\end{array}
\]

Solution:

2. \[
\begin{array}{c}
\text{\((5x + 2)° \)} \\
\text{\(x(3x + 14)° \)} \\
\end{array}
\]

Solution:

II. Show a complete proof:

Given: \(CE \parallel NI, CE \cong NI \)

Prove: \(\square \) NICE is a parallelogram.

Proof:
ANTICIPATION-REACTION GUIDE

Instruction: You were tasked to answer the first column during the earlier part of this module. Now, see how well you understood the lessons presented. Write A if you agree with the statement and write D if you disagree.

<table>
<thead>
<tr>
<th>After-Lesson Response</th>
<th>TOPIC: Parallelism and Perpendicularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lines on the same plane that do not intersect are parallel lines.</td>
<td></td>
</tr>
<tr>
<td>2. Skew lines are coplanar.</td>
<td></td>
</tr>
<tr>
<td>3. Transversal lines are lines that intersects two or more lines.</td>
<td></td>
</tr>
<tr>
<td>4. Perpendicular lines are intersecting lines.</td>
<td></td>
</tr>
<tr>
<td>5. If two lines are parallel to a third line, then the three lines are parallel.</td>
<td></td>
</tr>
<tr>
<td>6. If two lines are perpendicular to the same line, then the two lines are parallel.</td>
<td></td>
</tr>
<tr>
<td>7. If one side of a quadrilateral is congruent to its opposite side, then the quadrilateral is a parallelogram.</td>
<td></td>
</tr>
<tr>
<td>8. Diagonals of parallelograms bisect each other.</td>
<td></td>
</tr>
<tr>
<td>9. Diagonals of parallelograms are congruent.</td>
<td></td>
</tr>
<tr>
<td>10. Diagonals of parallelograms are perpendicular.</td>
<td></td>
</tr>
<tr>
<td>11. Opposite sides of parallelograms are parallel.</td>
<td></td>
</tr>
<tr>
<td>12. Opposite angles of a parallelogram are congruent.</td>
<td></td>
</tr>
<tr>
<td>13. Consecutive angles of a parallelogram are congruent.</td>
<td></td>
</tr>
<tr>
<td>14. Squares are rectangles.</td>
<td></td>
</tr>
<tr>
<td>15. Squares are rhombi.</td>
<td></td>
</tr>
</tbody>
</table>
Activity 18: Concept Mapping

Group Activity: Summarize the important concepts about parallelograms by completing the concept map below. Present and discuss them in a large group.

[Diagram of concept map]

Activity 19: Generalization Table

Fill in the last column of the generalization table below by stating your conclusions or insights about parallelism and perpendicularity.

How can parallelism or perpendicularity of lines be established?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>My Generalizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You are working in a furniture shop as a designer. One day, your immediate supervisor asked you to make a design of a wooden shoe rack for a new client, who is a well-known artist in the film industry. In as much as you don’t want to disappoint your boss, you immediately think of the design and try to research on the different designs available in the internet.

Below is your design:

1. Based on your design, how will you ensure that the compartments of the shoe rack are parallel? Describe the different ways to ensure that the compartments are parallel.

2. Why is there a need to ensure parallelism on the compartments? What would happen if the compartments are not parallel?

3. How should the sides be positioned in relation to the base of the shoe rack? Does positioning of the sides in relation to the base matter?
Activity 21

SUMMATIVE TEST

The copy of the summative test will be given to you by your teacher. Do your best to answer all the items correctly. The result will be one of the bases of your grade.

Now that you have a deeper understanding of the topic, you are ready to do the tasks in the next section.

What to Transfer

Your goal in this section is to apply your learning to real-life situations. You will be given a practical task which will demonstrate your understanding.

This task challenges you to apply what you have learned about parallel lines, perpendicular lines, parallelograms, and the angles and segments related to these figures. Your work will be graded in accordance with the rubric presented.

Activity 22

DESIGNERS FORUM

Scenario:

The Student Council of a school had a fund raising activity in order to put up a bookshelf for the Student Council Office. You are a carpenter who is tasked to create a model of a bookshelf using Euclidean tools (compass and a straightedge) and present it to the council adviser. Your output will be evaluated according to the following criteria: stability, accuracy, creativity, and mathematical reasoning.

<table>
<thead>
<tr>
<th>Goal</th>
<th>You are to create a model of a bookshelf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>Carpenter</td>
</tr>
<tr>
<td>Audience</td>
<td>Council Adviser</td>
</tr>
<tr>
<td>Situation</td>
<td>The Student Council of a school had a fund raising activity in order to put up a bookcase or shelf for the Student Council Office.</td>
</tr>
<tr>
<td>Product</td>
<td>Bookshelf</td>
</tr>
<tr>
<td>Standards</td>
<td>stability, accuracy, creativity, and mathematical reasoning.</td>
</tr>
</tbody>
</table>
RUBRIC FOR THE PERFORMANCE TASK

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>Outstanding</th>
<th>Satisfactory</th>
<th>Developing</th>
<th>Beginning</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>The computations are accurate and show a wise use of the key concepts of parallelism and perpendicularity of lines.</td>
<td>The computations are accurate and show the use of key concepts of parallelism and perpendicularity of lines.</td>
<td>The computations are erroneous and show some use of the key concepts of parallelism and perpendicularity of lines.</td>
<td>The computations are erroneous and do not show the use of key concepts of parallelism and perpendicularity of lines.</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>The model is well fixed and in its place.</td>
<td>The model is firm and stationary.</td>
<td>The model is less firm and show slight movement.</td>
<td>The model is not firm and has the tendency to collapse.</td>
<td></td>
</tr>
<tr>
<td>Creativity</td>
<td>The design is comprehensive and displays the aesthetic aspects of the mathematical concepts learned.</td>
<td>The design is presentable and makes use of the concepts of geometric representations.</td>
<td>The design makes use of the geometric representations but not presentable.</td>
<td>The design does not use geometric representations and is not presentable.</td>
<td></td>
</tr>
<tr>
<td>Mathematical Reasoning</td>
<td>The explanation is clear, exhaustive or thorough, and coherent. It includes interesting facts and principles. It uses complex and refined mathematical reasoning.</td>
<td>The explanation is clear and coherent. It covers the important concepts. It uses effective mathematical reasoning.</td>
<td>The explanation is understandable but not logical with some evidence of mathematical reasoning.</td>
<td>The explanation is incomplete and inconsistent with little evidence of mathematical reasoning.</td>
<td></td>
</tr>
</tbody>
</table>

OVERALL RATING
You have accomplished the task successfully. This shows that you have learned the important concepts in this module. To end this lesson meaningfully and to welcome you to the next module, accomplish this activity.

In this unit I learned about

__
__
__

These concepts can be used in

__
__
__

I understand that

__
__
__

These are important because

__
__
__

I can use the concepts of parallelism and perpendicularity in my life by

__
__
__

In this section, your task was to create a model of a bookcase using a protractor, a compass, and a straightedge and present it to the council adviser.

How did you find the performance task? How did the task help you see the real-world application of the topic?

You have completed this lesson. Before you go to the next lesson, you have to answer the post assessment to evaluate your learning. Take time to answer the post assessment which will be given to you. If you do well, you may move on to the next module. If your score is not at the expected level, you have to go back and study the module again.
In this lesson, I have understood that
SUMMARY/SYNTHESIS/GENERALIZATION

In this module, you were given the opportunity to explore, learn, and apply the key concepts on parallelism and perpendicularity of lines. Doing the given activities and performing the transfer task with accuracy, creativity, stability, and use of mathematical reasoning were the evidence of your understanding the lesson.

GLOSSARY OF TERMS USED IN THIS LESSON:

1. Adjacent Sides
 These are two non-collinear sides with a common endpoint.

2. Alternate Exterior Angles
 These are non-adjacent exterior angles that lie on opposite sides of the transversal.

3. Alternate Interior Angles
 These are non-adjacent interior angles that lie on opposite sides of the transversal.

4. Consecutive Angles
 These are two angles whose vertices are the endpoints of a common (included) side.

5. Consecutive Vertices
 These are the vertices which are at the endpoints of a side.

6. Corresponding Angles
 These are non-adjacent angles that lie on the same side of the transversal, one interior angle and one exterior angle.

7. Deductive Reasoning
 It is a type of logical reasoning that uses accepted facts as reason in a step-by-step manner until the desired statement is arrived at or proved.

8. Flow Chart Form of Proof
 It is a series of statements in a logical order placed on a flow chart. Each statement together with its reason written in a box, and arrows are used to show how each statement leads to another.

9. Kite
 It is a quadrilateral with two distinct pairs of adjacent congruent sides.
10. Opposite Angles
 In a quadrilateral, these are two angles which do not have a common side.

11. Opposite Sides
 In a quadrilateral, these are the two sides that do not have a common endpoint.

12. Paragraph Form of Proof
 It is the form of proof where you write a paragraph to explain why a conjecture for a given situation is true.

13. Parallel lines
 Parallel lines are coplanar lines that do not intersect.

14. Parallelogram
 It is a quadrilateral with two pairs of parallel sides.

15. Perpendicular Bisector
 It is a line, a ray, or another segment that is perpendicular to the segment and intersects the segment at its midpoint.

16. Perpendicular lines
 These are lines that intersect at 90°- angle.

17. Proof
 It is a logical argument in which each statement made is justified by a statement that is accepted as true.

18. Rectangle
 It is a parallelogram with four right angles.

19. Rhombus
 It is a parallelogram with four congruent sides.

20. Same-Side Interior Angles
 These are consecutive interior angles that lie on the same side of the transversal.

21. Same-Side Exterior Angles
 These are consecutive exterior angles that lie on the same side of the transversal.

22. Skew Lines
 These are non-coplanar lines that do not intersect.
23. Square
 It is a parallelogram with four congruent sides and four right angles.

24. Transversal
 It is a line that intersects two or more coplanar lines at different points.

25. Trapezoid
 It is a quadrilateral with exactly one pair of parallel sides.

26. Two-Column Form of Proof
 A deductive argument that contains statements and reasons organized in two columns.

POSTULATES OR THEOREMS ON PROVING LINES PARALLEL:

1. Given two coplanar lines cut by a transversal, if corresponding angles are congruent, then the two lines are parallel.

2. Given two lines cut by a transversal, if alternate interior angles are congruent, then the lines are parallel.

3. If two lines are cut by a transversal such that the alternate exterior angles are congruent, then the lines are parallel.

4. Given two lines cut by a transversal, if the same side interior angles are supplementary, then the lines are parallel.

5. If two lines are cut by a transversal so that exterior angles on the same side of the transversal are supplementary, then the lines are parallel.

6. In a plane, if two lines are both parallel to a third line, then they are parallel.

THEOREMS ON PROVING LINES PERPENDICULAR:

1. If two lines are perpendicular, then they form four right angles.

2. If the angles in a linear pair are congruent, then the lines containing their sides are perpendicular.

3. In a plane, through a point on a given line there is one and only one line perpendicular to the given line.

4. In a plane, a segment has a unique perpendicular bisector.

5. If two angles are adjacent and complementary, the non-common sides are
DEFINITIONS AND THEOREMS INVOLVING PARALLELOGRAMS

Given a parallelogram, related definition and theorems are stated as follows:
1. A parallelogram is a quadrilateral with two pairs of parallel sides.
2. If a quadrilateral is a parallelogram, then 2 pairs of opposite sides are congruent.
3. If a quadrilateral is a parallelogram, then 2 pairs of opposite angles are congruent.
4. If a quadrilateral is a parallelogram, then the consecutive angles are supplementary.
5. If a quadrilateral is a parallelogram, then the diagonals bisect each other.
6. If a quadrilateral is a parallelogram, then the diagonals form two congruent triangles.

REFERENCES AND WEBSITE LINKS USED IN THIS LESSON:

References:

WEBSITES:

*http://oiangledlineswaves.jpg
*http://brainden.com/images/cafe-wall.jpg
 By Jan Adamovic
 ©Copyright 2012 BrainDen.com
These sites provide the optical illusions.

 Created by Math Warehouse
 Copyright by www.mathwarehouse.com
These sites provide exercises and review in the relationships of the different angles formed by parallel lines cut by a transversal.

*http://www.youtube.com/watch?v=AE3Pqlvqw0&feature=related
*http://www.youtube.com/watch?v=VA92EWh9SRI&feature=relmfu
 Created by Geometry4Everyone
 Copyright©2010 Best Records
These sites provide an educational video presentation about parallel lines.

 By New Braunfels ISD
 ©2007 Artists Right Society (ARS), New York/ADAGP, Paris
This site provides reference to exercises involving parallel and perpendicular lines.

*http://www.regentsprep.org/Regents/math/geometry/GP8/PracParallel.htm
 Created by Donna Roberts
 Copyright 1998-2012 http://regentsprep.org
 Oswego City School District Regents Exam Prep Center
This site provides an interactive quiz which allows the students to practice solving problems
on parallel lines cut by a transversal.

* http://www.nexuslearning.net/books/ml-geometry/
 Created by McDougal Littell Geometry(2011)
 Copyright © 1995-2010 Houghton Mifflin Company
This site discusses and exercises involving parallel and perpendicular lines and quadrilaterals.

* http://www.connect Ed.mcgraw_hill.com
 chapter_03_89527.3pdf
 Created by McGraw Hill School Education Group
 Copyright © The McGraw-Hill Companies, Inc
This site provides lessons and exercises on parallel and perpendicular lines.

 Created by Florida Virtual School
 Copyright © 2012 Florida Virtual School
 2145 Metro Center Boulevard, Suite 200, Orlando, FL 32835
This site provides exercises involving quadrilaterals.

 Geometry Connections Extra Practice
 Copyright © 2007 by CPM Educational Program
http://viking.coe.uh.edu/~jvanhook/geometry/chapter2/unit2lesson7notes.pdf
 by University of Houston
 Holt Geometry
 Copyright © by Holt, Rinehart and Winston
These sites provide reference and exercises in writing proofs.

* http://www.redmond.k12.or.us/14552011718214563/lib/14552011718214563/Lesson_4.7.pdf
 Created by StudentWebLinks@Keymath.com Lesson 4.7
 © 2008 Key Curriculum press
This site provides discussions on how to make a flow chart and exercises in proving through
deductive reasoning.

 Created by Donna Roberts
 Copyright 1998-2012 http://regentsprep.org
 Oswego City School District Regents Exam Prep Center
 This site provides discussions on the definitions and theorems involving parallelograms.

 Author: Lois Edward
 Mathematics Consultant
 Minneapolis, Minnesota
 Copyright ©by the McGraw Hill Companies, Inc
 This site provides discussions on the concept map.